Polinomlar için bağıl aşırılık oluşur mu?

İçindekiler:

Polinomlar için bağıl aşırılık oluşur mu?
Polinomlar için bağıl aşırılık oluşur mu?
Anonim

Bir fonksiyonun göreli ekstremi kritik noktalarda oluşmalıdır, ancak bunlar her kritik noktada gerçekleşmez. Göreceli ekstrema sadece f'(x)'in işaret değiştirdiği kritik noktalarda meydana gelir. … Alt satırdaki noktaların hiçbiri bağıl ekstrem değildir çünkü türev bu x değerlerinde işaret değiştirmez.

Göreceli aşırılık nerede oluşur?

Sürekli bir fonksiyon için, göreli ekstrem fonksiyonun kritik bir sayısında meydana gelmelidir. f(x) fonksiyonunun x=c'de göreli bir minimumu veya göreli bir maksimumu varsa, o zaman c, f(x) fonksiyonunun kritik bir sayısıdır, yani ya f '(c)=0, ya da f '(c) tanımlanmadı.

Polinomların göreceli aşırılıkları var mı?

n dereceli bir polinom olabilir, en fazla, n - 1 göreli ekstrema.

Göreceli ekstrema nedir?

Göreceli bir uç değer, göreli bir minimum ya da göreli bir maksimumdur. Not: Ekstremumun çoğulu ekstremadır ve benzer şekilde maksimum ve minimum için. Göreceli bir ekstremum, kendisine "yakın" noktalara bakılarak yerel olarak "aşırı" olduğundan, yerel ekstremum olarak da adlandırılır.

Göreceli minimum nedir?

Bir fonksiyonun göreli minimumu fonksiyonun alanındaki tüm x noktalarıdır, öyle ki bazı komşuluklar için en küçük değerdir. Bunlar, birinci türevin 0 olduğu veya bulunmadığı noktalardır.

Önerilen: